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A B S T R A C T

In vibration fatigue, high-spatial-density experimental damage identification is hard to conduct.
Fatigue damage is typically localized (in time and space) and loads can change direction
with time. Thermoelasticity studies the interaction between temperature changes and elastic
deformations in materials: minute changes in temperature can be related to the sum of
the normal stresses, providing information about the multiaxial stress state. This research
discusses the application of thermoelasticity in multiaxial criterion resulting in the equivalent
uniaxial load. In this research, the thermoelasticity-based equivalent uniaxial load is related
to the established theory on vibration-fatigue damage estimation in the spectral domain. The
introduced thermoelasticity-based criterion is compared to the Equivalent von Mises stress
criterion. Building on theoretical, numerical, and experimental research, this work examines the
limitations of thermoelasticity-based criterion. Where the surface shear stresses are significantly
smaller than the normal stresses, the numerical and experimental research shows promising
results.

Based on the introduced thermoelastic multiaxial criterion and with the recent progress
in thermal imaging and signal processing, new possibilities for a close-to-real-time full-field
fatigue-damage estimation open up.

. Introduction

Vibrating structures are prone to failure because of material fatigue, especially when excited at, or close to, one of their
igenfrequencies [1,2]. Different approaches and methods are available for vibration-fatigue analysis. They can be defined in
he time- or frequency-domain. Frequency-domain methods are preferred when the excitation is random and only the statistical
istribution of the excitation is known [3]. This is applicable in structural dynamics, where the random excitation is usually
rovided in terms of Power Spectral Density (PSD) functions. Multiaxial, non-Gaussian and non-stationary excitation [4–7] and
heir influence on fatigue life [8,9] have been extensively researched in recent years. Fatigue damage can also be related directly
o the dynamic properties of a structure by using the modal decomposition, which greatly reduces the calculation times [10,11].
or uniaxial loads, different damage-estimation methods using spectral moments have been developed, such as: Dirlik [12], Tovo–
enasciutti [13], Gao–Moan [14], Petrucci–Zuccarello [15], Zhao–Baker [16]. For a review of more than 20 methods, see [17].
he material parameters for high-cycle fatigue (S-N curve) are defined for uniaxial stress states [1]. Thus, for the multiaxial stress
tates, the response stress tensor must be converted into the uniaxial equivalent stress. For this, several multiaxial vibration-fatigue
riteria are available. In structural dynamics, the criteria defined in the frequency-domain are especially interesting [18–20]; for
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comparison studies, see [21,22]. In the last year, several new approaches have been researched. Schmidt and Kraft [23] proposed the
linear-wave-interference equivalent-stress method, which is based on the complex invariant. Aime et al. [24] researched the fatigue-
damage multi-spectrum and extreme-response multi-spectrum. Sui et al. [25] researched, by analogy to the Projection-by-Projection
riterion, an improved fatigue-response spectrum method. Despite the recent efforts in multiaxial criteria, the frequency-domain
ormulation of the equivalent von Mises stress (EVMS), as defined by Preumont et al. [26], is still frequently used. A drawback of

the EVMS is that it disregards the phase angles between the normal and shear stresses, so it is only valid if they are in phase [27,28].
If the theoretical methods to describe the multiaxial loads see great progress, we see relatively little progress in the field of

dentifying fatigue damage; potentially real-time and full-field. In recent years there has been an increasing utilization of non-
ontact full-field measurement techniques in structural dynamics [29,30]. Cameras based in the visible spectrum can be used for
easuring displacements and deformations [31] and also for image-based experimental modal analysis [32]. For a vibration-fatigue

estimation, the strain mode shapes are required. To identify strain shapes with the visible-spectrum camera, the relationship between
displacement and strain must be known. For the Euler–Bernoulli beam, the second spatial derivative of the measured displacement
must be calculated [33], which greatly increases the noise level [34]. Displacements must also be in-plane, as the out-of-plane
isplacements are not detected with a traditional setup (multiple cameras [35] and frequency-domain triangulation [36] enable

out-of-plane measurement).
In contrast to conventional cameras, cameras operating in the infrared (IR) spectrum do not require any pattern or lighting,

since measurements are not based on displacement identification but rather directly on stress-induced temperature differences.
However, some measures have to be taken to minimize the IR reflection from surroundings and background IR radiation [37].
Furthermore, thermal cameras take advantage of the thermoelastic effect to measure the stress (also known as Thermoelastic stress
nalysis (TSA) [37]). Knowing the Young’s modulus, the strain shapes are obtained without spatial derivations. Stress caused by

out-of-plane displacements can be measured as well [33].
Thermoelastic stress analysis is an experimental method that uses various types of infrared sensors to determine the stresses

on the surfaces of materials [37,38]. The fundamental theory upon which it operates is long known [39,40]; however, it has only
ecently become applicable in various fields, due to the advances in technology for detecting small temperature changes at the level
f a fraction of a mK at relatively high frequencies [41,42].

High-speed, infrared thermal cameras that are capable of achieving sampling frequencies up to several kHz have been successfully
used to identify strain mode shapes using the thermoelastic principle [33,43] and also to determine the spatial damage-intensity
distribution of the excited modes [44] with the modal decomposition method [10].

When a thermal camera is used for measuring multiaxial stresses on the surface of a structure, it provides a scalar value
irectly, i.e., the sum of the normal stresses, while disregarding the shear stresses. This conversion from the full tensor to the scalar
alue is similar to the calculation of the uniaxial equivalent stress, as done in vibration-fatigue analysis [45]. There is currently a

limited understanding of using thermoelasticity-based measurements in multiaxial vibration fatigue in comparison to other methods.
Therefore, in this research, a new multiaxial vibration-fatigue criterion based on thermoelasticity is introduced. The criterion sums
the normal stresses of a stress response, and uses the obtained uniaxial equivalent stress for vibration-fatigue analysis. By doing so,
he damage that would be identified with a thermal camera is simulated. A numerical experiment is conducted in which the proposed
riterion is compared to the established EVMS, as the structure is excited with a broadband random signal. The experimental research
ompares the numerical findings to a real case.

This research is organized as follows. The theoretical background for the vibration fatigue, structural dynamics and thermoelas-
ticity is given in Section 2. The proposed thermoelastic multiaxial damage criterion is presented in Section 3. Section 4 describes a
umerical experiment using the proposed criterion, and a real experiment with the thermal camera. In Section 5, the results from
he numerical and real experiments are compared and discussed. The last section draws the conclusions.

2. Theoretical background

2.1. Thermoelastic effect

The thermoelastic effect describes the relation between the stress state and the temperature difference that occurs in materials
during loading [39,40]. Under adiabatic conditions, local heating under compression and local cooling under expansion can be
observed. During harmonic excitation, the harmonic stresses in a solid material produce a harmonic temperature response, related
to the first stress invariant (i.e., the sum of the normal stresses) [46]. The amplitude of the temperature variations are typically of
the order of mK. Two conditions are required to achieve an adiabatic process. First, the deformations must be within the elastic
range; second, the reversibility of the process must be achievable, e.g., the process must occur fast enough so the heat dissipation to
the surroundings and other parts of the material is negligible [43]. For metals, the adiabatic conditions are achieved at a few Hz of
armonic excitation (e.g., aluminium at 5 Hz) [47], which means that the adiabatic condition is generally satisfied for applications
n structural dynamics [33]. For adiabatic conditions and isotopic materials, the thermoelastic effect is defined as (for details,

see Appendix):

𝛥𝜎𝑘𝑘 = −𝛥𝑇 𝜌
𝛼 𝑇0

𝑐𝑝 (1)

or:

𝛥𝑇 = 𝐾𝑚 (𝛥𝜎𝑥𝑥 + 𝛥𝜎𝑦𝑦 + 𝛥𝜎𝑧𝑧) (2)
2 
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where 𝛥𝜎𝑘𝑘 represents the sum of the change of the normal stresses in all three directions (𝛥𝜎𝑥𝑥, 𝛥𝜎𝑦𝑦, 𝛥𝜎𝑧𝑧) and 𝐾𝑚 is the
thermoelastic constant [48]:

𝐾m = −𝛼 𝑇0
𝜌 𝑐p

(3)

𝑇0 is the temperature of the surroundings and 𝛼 is the coefficient of heat expansion.

2.2. Stress response of MDOF systems

Vibration fatigue is generally related to continuous elastic structures. With the exception of very simple structures that can
be described analytically, geometrically complex structures have to be defined with a system of differential equations, assuming
hysteresis damping and 𝑁-degrees of freedom (MDOF). In real-world cases, MDOF systems theory is often applied to the finite
element models, that enable effective and accurate analysis of complex structures. The system of equations can be written in matrix
form [49]:

𝐌�̈�(𝑡) + i𝐃 𝐱(𝑡) +𝐊 𝐱(𝑡) = 𝐟 (𝑡), (4)

where 𝐱(𝑡) and �̈�(𝑡) are the displacement and the acceleration vectors, respectively. 𝐌, 𝐃 and 𝐊 are the mass, damping and stiffness
matrices, respectively. 𝐟 is the vector of the excitation forces. By assuming a harmonic excitation 𝑥(𝑡) = 𝐗 𝑒i𝜔𝑡 and a harmonic
response 𝑓 (𝑡) = 𝐅 𝑒i𝜔𝑡, where 𝜔 is the angular frequency and 𝐗, 𝐅 are the complex vectors of the response and excitation amplitudes.
For harmonic conditions, Eq. (4) can be rewritten as [50,51]:

𝐗 =
(

−𝜔2 𝐌 + i𝐃 +𝐊
)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐇(𝜔)

𝐅, (5)

where 𝐇(𝜔) is the receptance matrix. Based on orthonormality [51], the receptance matrix 𝐇(𝜔) is written in a diagonal form, where
complex eigenvalues are defined as 𝜆2𝑟 = 𝜔2

𝑟
(

1 + i𝜂𝑟
)

. Diagonal dots ⋱ denote a diagonal matrix:

𝐇(𝜔) = 𝜱
⎡

⎢

⎢

⎣

⋱
𝜔2
𝑟
(

1 + i𝜂𝑟
)

− 𝜔2

⋱

⎤

⎥

⎥

⎦

−1

𝜱T (6)

𝜔𝑟 is a natural frequency and 𝜂𝑟 is the damping loss factor of the 𝑟th mode. The mass-normalized eigenvectors of a system are
stacked in a matrix (each column corresponds to the 𝑟th vector). 𝜱 =

[

𝝓1,𝝓2,…
]

The response obtained using the receptance matrix 𝐇(𝜔) is in the form of displacements 𝐗(𝜔). For the purpose of vibration-
atigue analysis, the stress response 𝐗𝑠(𝜔) is required. From the 𝑟th displacement mode shape 𝝓𝑟, the 𝑟th strain mode shape 𝝓𝜀

𝑟 is
first obtained using the differential field operator 𝐃 [51]:

𝝓𝜀
𝑟 = 𝐃𝝓𝑟, (7)

where:

𝐃 = 1
2
(

∇ + ∇T) (8)

The 𝑟th stress mode shape can be then obtained using Hooke’s law, under the assumption of small displacements, by using the
stiffness tensor 𝐂:

𝝓𝑠
𝑟 = 𝐂𝝓𝜀

𝑟 (9)

Using these relations, the stress response to a given excitation can be calculated [51,52]:

𝐗𝑠(𝜔) = 𝐂𝐃 𝐗(𝜔) = 𝜱𝑠
⎡

⎢

⎢

⎣

⋱
𝜔2
𝑟
(

1 + i𝜂𝑟
)

− 𝜔2

⋱

⎤

⎥

⎥

⎦

−1

𝜱T

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐇𝑠𝑓 (𝜔)

𝐅(𝜔) (10)

𝐇𝑠𝑓 (𝜔) is the stress frequency-response function (FRF) that can be written as a sum of the FRFs of all 𝑁 modes:

𝐇𝑠𝑓 (𝜔) =
𝑁
∑

𝑟=1
𝑟𝐇𝑠𝑓 (𝜔) =

𝑁
∑

𝑟=1

𝑟𝐀𝑠

𝜔2
𝑟 − 𝜔2 + i𝜂𝑟𝜔2

𝑟
, (11)

where 𝑟𝐀𝑠 denotes the stress modal constants matrix for the 𝑟th mode [53]:

𝑟𝐀𝑠 =

⎡

⎢

⎢

⎢

⎢

⎢

𝜙𝑠
1𝑟𝜙1𝑟 ⋯ 𝜙𝑠

1𝑟𝜙𝑗 𝑟 ⋯ 𝜙𝑠
1𝑟𝜙𝑁d𝑟

⋮ ⋱ ⋮ ⋱ ⋮
𝜙𝑠
𝑖𝑟𝜙1𝑟 ⋯ 𝜙𝑠

𝑖𝑟𝜙𝑗 𝑟 ⋯ 𝜙𝑠
𝑖𝑟𝜙𝑁d𝑟

⋮ ⋱ ⋮ ⋱ ⋮
𝜙𝑠 𝜙 ⋯ 𝜙𝑠 𝜙 ⋯ 𝜙𝑠 𝜙

⎤

⎥

⎥

⎥

⎥

⎥

(12)
⎣ 𝑁s𝑟 1𝑟 𝑁s𝑟 𝑗 𝑟 𝑁s𝑟 𝑁d𝑟 ⎦

𝑁s×𝑁d ,

3 
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𝜙𝑠
𝑖𝑟 and 𝜙𝑗 𝑟 represent the values of the stress modal shapes 𝝓𝑠

𝑟 and the displacement modal shapes 𝝓𝑟, respectively. 𝑁𝑑 and 𝑁𝑠
denote the degrees of freedom of the modal displacements 𝝓𝑟 and the modal stress shapes 𝝓𝑠

𝑟 , respectively. To determine the system’s
esponse to random excitation, the power spectral density (PSD) of the stress response 𝐒𝑠𝑠(𝜔) is calculated, where 𝐒𝑓 𝑓 (𝜔) represents
he PSD of the excitation force [51,54,55]:

𝐒𝑠𝑠(𝜔) = 𝐇𝑠𝑓 (𝜔) ⋅ 𝐒𝑓 𝑓 (𝜔) ⋅𝐇∗ T
𝑠𝑓 (𝜔), (13)

where ∗ denotes the complex conjugate. 𝐒𝑓 𝑓 (𝜔) is a matrix with a size of 3 × 3, while 𝐒𝑠𝑠(𝜔) has a size of 6 × 6.
In vibration-fatigue analysis the consideration of the full FEM model results in a large numerical problem [10]. However, as the

solution in the frequency domain is usually limited to a smaller frequency range, only a subset of the natural frequencies denoted
by 𝑀 can be considered, which greatly reduces the calculation times, since the number of natural frequencies 𝑀 is substantially
smaller than the total number of natural frequencies 𝑁 ; the reduced FRF can be expressed as [10]:

�̃�𝑠𝑓 (𝜔) =
𝑀
∑

𝑟=1
𝑟𝐇𝑠𝑓 (𝜔) (14)

If the natural frequencies are well separated from each other in the frequency domain, the power spectral density of the stress
response can be approximated by [10]:

�̃�𝑠𝑠(𝜔) = �̃�𝑠𝑓 (𝜔) ⋅ 𝐒𝑓 𝑓 (𝜔) ⋅ �̃�∗ T
𝑠𝑓 (𝜔) ≈

𝑀
∑

𝑟=1
𝑟𝐇𝑠𝑓 (𝜔) ⋅ 𝐒𝑓 𝑓 (𝜔) ⋅ 𝑟𝐇∗ T

𝑠𝑓 (𝜔) (15)

Under the assumption that an individual mode only contributes to the damage in the vicinity of its own natural frequency, the
following equation is obtained [10]:

�̃�𝑠𝑠(𝜔) =
𝑀
∑

𝑟=1

𝑟𝐀𝑠 ⋅ 𝐒𝑓 𝑓 (𝜔) ⋅ 𝑟𝐀∗ T
𝑠

𝜔4 − 2𝜔2𝜔2
𝑟 +

(

1 + 𝜂2
)

𝜔4
𝑟

(16)

2.3. Multiaxial criterion

For a vibration-fatigue analysis, the full response stress tensor must be converted into the uniaxial equivalent stress according to
a selected criterion, which can later be used for a damage estimation [1,45]. The reason for this is that the vibration-fatigue analysis
is based on the Palmgren–Miner hypothesis of linear damage accumulation [56,57], where the material properties for cyclic uniaxial
stress states are known.

The stress state in the time domain can be described by the stress-tensor components:

𝝈(𝑡) = [𝜎𝑥𝑥(𝑡), 𝜎𝑦𝑦(𝑡), 𝜎𝑧𝑧(𝑡), 𝜎𝑥𝑦(𝑡), 𝜎𝑥𝑧(𝑡), 𝜎𝑦𝑧(𝑡)]

Using the probabilistic approach in the frequency domain [21], the stress-tensor components are expressed through a PSD matrix
𝐒𝑠𝑠(𝜔) with a dimension of 6 × 6:

𝐒𝑠𝑠(𝜔) =
⎡

⎢

⎢

⎣

𝑆𝑥𝑥,𝑥𝑥(𝜔) ⋯ 𝑆𝑥𝑥,𝑦𝑧(𝜔)
⋮ ⋱ ⋮

𝑆𝑦𝑧,𝑥𝑥(𝜔) ⋯ 𝑆𝑦𝑧,𝑦𝑧(𝜔)

⎤

⎥

⎥

⎦

The diagonal of this matrix contains the autospectral density functions, while the upper and lower triangular parts contain the
ross-spectral density functions.

The multiaxial criteria in the frequency domain are frequently obtained as a reformulation of the criteria defined in the time
domain and are classified in the following categories: critical plane criteria [45] and stress-invariant criteria [58]. For a review of
multiple multiaxial criteria see, for example, Carpinteri et al. in [59] who reviewed the maximum normal or shear stress, normal
strain on the fracture plane, maximum principal stress, Tresca and von Mises stress.

Generally, multiaxial criteria define the relation between the components of the stress tensor and the uniaxial equivalent stress.
Depending on the type of criteria, the relation between a tensor and the equivalent stress can be linear or non-linear [60]. For
criteria with linear relations (e.g., maximum normal stress or strain, maximum shear stress), the same types of criteria that are
sed in the time domain can be used on the PSD in the frequency domain; The equivalent stress PSD can be calculated as a linear
ombination of the stress PSD components [60]. Non-linear criteria are defined by a non-linear relation in the time domain and

need to be reformulated for use in the frequency domain. One of such criteria is the Preumont and Piéfort reformulation of the
equivalent von Mises stress (EVMS) [21,26,61]. EVMS transforms the PSD of the stress tensor 𝐒𝑠𝑠(𝜔) into the PSD of the uniaxial
quivalent stress [26]. For the reduced model, the EVMS is defined as [51]:

𝑆𝑐 (𝜔) =
𝑀
∑

𝑟=1
𝑟𝑆𝑐 =

𝑀
∑

𝑟=1
Tr ace [𝐐 ⋅ 𝑟𝐒𝑠𝑠(𝜔)

]

, (17)

where 𝐐 is a constant matrix:
4 
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𝐐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1∕2 −1∕2 0 0 0
−1∕2 1 −1∕2 0 0 0
−1∕2 −1∕2 1 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

2.4. Vibration fatigue using spectral methods

In probabilistic approach to vibration fatigue, the value of damage intensity 𝑑 is used instead of absolute damage value 𝐷, as
he calculations are based in the frequency domain. The damage intensity represents the damage rate or damage per unit time and
s given with the equation [51]:

𝑑 = 𝐷
𝑇
, (19)

where 𝑇 represents the fatigue life or the time after which the failure occurs. Note that 𝐷 represents the amount of damage that
denotes failure, which is usually 1, but can sometimes be chosen differently [51]. Most frequency-domain methods for vibration-
fatigue analysis rely on spectral moments. To compute these spectral moments, the uniaxial equivalent of the stress PSD 𝑆𝑐 (𝜔) is
required. Assuming the modes are well separated, the spectral moments for the reduced model are calculated using [51]:

𝑟𝑚𝑖 = 2∫
∞

0
𝜔i

𝑟𝑆𝑐 (𝜔) d𝜔, (20)

where the index 𝑟 is used to describe the participation of a particular mode shape (for details, see [10]). The spectral moments of
he individual mode shapes are then summed for the reduced spectral moment:

�̃�𝑖 =
𝑀
∑

𝑟=1
𝑟𝑚𝑖. (21)

Based on the computed spectral moments, damage intensity for the broadband random process can be determined using one of the
methods available, e.g., the Tovo–Benasciutti method [62], which defines a linear relation between the broadband damage intensity
𝑑TB and narrowband damage estimator 𝑑NB [63]. It is defined by the equation:

𝑑TB =
[

𝑏 + (1 − 𝑏) 𝛼𝑘−12
]

𝛼2 𝑑NB, (22)

where 𝑏 is a broadband weighing parameter, approximated using the spectral moments [13]. 𝛼𝑖 is a spectral width parameter [51].
For the broadband weighing parameter 𝑏, the following approximation was used [13]:

𝑏TBapp =

(

𝛼1 − 𝛼2
) [

1.112
(

1 + 𝛼1𝛼2 −
(

𝛼1 + 𝛼2
))

e2.11𝛼2 +
(

𝛼1 − 𝛼2
)]

(

𝛼2 − 1)2
(23)

3. Application of thermoelasticity in multiaxial vibration-fatigue criterion

This section introduces the thermoelasticity-based multiaxial vibration-fatigue criterion that has the advantage of being directly
measured using a high-speed thermal imaging camera. One of the goals of this research is to determine the validity of the
thermoelasticity-based multiaxial criterion in comparison with the EVMS.

Thermoelasticity relies on the sum of the normal stress amplitudes. Based on Eqs. (10) and (11), the formulation for determining
the response stress amplitudes of a MDOF system is:

𝐗𝑠 = 𝐇𝑠𝑓 (𝜔) 𝐅 =
𝑁
∑

𝑟=1

𝑟𝐀𝑠

𝜔2
𝑟 − 𝜔2 + i 𝜂𝑟 𝜔2

𝑟
𝐅 (24)

Expressing the modal constant matrix 𝑟𝐀𝑠 with all the components (12), the following matrix equation is obtained, where only
the contribution of a single mode 𝑟 is considered for the purpose of a simple derivation.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝜁 (𝜔)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜙𝜎𝑥𝑥𝜙𝑥 𝜙𝜎𝑥𝑥𝜙𝑦 𝜙𝜎𝑥𝑥𝜙𝑧
𝜙𝜎𝑦𝑦𝜙𝑥 𝜙𝜎𝑦𝑦𝜙𝑦 𝜙𝜎𝑦𝑦𝜙𝑧

𝜙𝜎𝑧𝑧𝜙𝑥 𝜙𝜎𝑧𝑧𝜙𝑦 𝜙𝜎𝑧𝑧𝜙𝑧
𝜙𝜎𝑥𝑦𝜙𝑥 𝜙𝜎𝑥𝑦𝜙𝑦 𝜙𝜎𝑥𝑦𝜙𝑧

𝜙𝜎𝑥𝑧𝜙𝑥 𝜙𝜎𝑥𝑧𝜙𝑦 𝜙𝜎𝑥𝑧𝜙𝑧
𝜙𝜎𝑦𝑧𝜙𝑥 𝜙𝜎𝑦𝑧𝜙𝑦 𝜙𝜎𝑦𝑧𝜙𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑓𝑥
𝑓𝑦
𝑓𝑧

⎤

⎥

⎥

⎦

(25)

𝜁 (𝜔) represents the dynamic part of the equation:

𝜁 (𝜔) = 1 (26)

𝜔2
𝑟 − 𝜔2 + i𝜂𝑟𝜔2

𝑟
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Inserting the stress components from Eq. (25) into the thermoelastic law (2), the thermoelastic effect for a single mode system
can be expressed, where the normal stress amplitudes are summed and the shear stress amplitudes are neglected:

𝛥𝑇 ∕𝐾𝑚 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 = 𝜁 (𝜔)
(

𝜙𝜎𝑥𝑥 + 𝜙𝜎𝑦𝑦 + 𝜙𝜎𝑧𝑧

)

(

𝑓𝑥𝜙𝑥 + 𝑓𝑦𝜙𝑦 + 𝑓𝑧𝜙𝑧
)

(27)

Eq. (27) shows, how the thermoelastic effect (the sum of the normal stress amplitudes) can be calculated and related to the
temperature change 𝛥𝑇 . However, in vibration-fatigue analysis, the PSDs of the stress response are needed (not the amplitudes) (20).

The equivalent stress PSD of the thermoelastic criterion cannot be simply calculated as a sum of the normal stress PSD components
auto-spectral densities), as they are positive values by definition and do not include the phase or sign information. On the other

hand, the thermoelastic criterion relies on the sum of the normal stress amplitudes (not the PSD), considering their signs (2), resulting
in the negative (compressive) and positive (tensile) stresses being subtracted. This means that the thermoelastic criterion needs to
be reformulated for use in the frequency domain.

Similar to the EVMS criterion formulation (17), the proposed thermoelasticity-based criterion is defined with the constants matrix
𝐐. In this case, a thermoelastic criterion matrix that sums the normal stresses in the PSD formulation is:

𝐐thermo =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (28)

The 𝐐thermo matrix is used in Eq. (17). For a single mode:

𝑟𝑆thermo(𝜔) = Tr ace [𝐐thermo ⋅ 𝑟𝐒𝑠𝑠(𝜔)
]

, (29)

Inserting 𝑟𝐒𝑠𝑠 (16) into Eq. (29):

𝑟𝑆thermo(𝜔) =
(

𝛥𝑇
𝐾𝑚

)2

⏟⏞⏟⏞⏟
camera

= Tr ace [𝐐thermo ⋅ 𝜁 (𝜔) 𝑟𝐀𝑠 𝐒𝑓 𝑓 (𝜔) 𝑟𝐀∗ T
𝑠

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
simulation

(30)

Considering Eq. (30) in components notation, the formulation can be simplified to the thermoelasticity-based equivalent uniaxial
stress PSD:

𝑟𝑆thermo(𝜔) =
(

𝛥𝑇
𝐾𝑚

)2

⏟⏞⏟⏞⏟
camera

=
(

𝜁 (𝜔)
(

𝜙𝜎𝑥𝑥 + 𝜙𝜎𝑦𝑦 + 𝜙𝜎𝑧𝑧

)

(

𝑓𝑥𝜙𝑥 + 𝑓𝑦𝜙𝑦 + 𝑓𝑧𝜙𝑧
)

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
simulation

(31)

On one hand, the thermoelasticity-based equivalent stress 𝑟𝑆thermo(𝜔) can be determined with a numerical simulation, as a
response to the given excitation PSD. Based on the thermoelasticity-based equivalent stress, the spectral moments and damage
re computed, as described in Section 2.4 (instead of 𝑟𝑆𝑐 (𝜔) the 𝑟𝑆thermo(𝜔) has to be used). Details are given in the numerical

experiment (Section 4.1), which compares the proposed thermoelasticity-based uniaxial equivalent to the EVMS (17) criterion.
On the other hand, the equivalent stress 𝑟𝑆thermo(𝜔) can be measured directly with the thermal imaging camera, as shown with

the underbraces in Eqs. (30) and (31). As the thermal camera measures the temperature/stresses on the surface of structures, the
ormulation for the thermoelastic effect can be simplified for the plane-stress (i.e., 𝛥𝜎3 = 0) [44]. Expressing Eq. (2) for plane-stress

and in principal stress notation:

𝛥𝑇 = 𝐾𝑚
(

𝛥𝜎1 + 𝛥𝜎2
)

, (32)

meaning, that out of the established multiaxial criteria [59], the thermoelasticity-based criterion is the most similar to the maximum
principal stress criterion. The thermoelastic criterion on the surface (𝛥𝜎1 +𝛥𝜎2) is only different from the maximum principal stress
(𝛥𝜎1) by the amplitude of the second principal stress 𝛥𝜎2, which is smaller than 𝛥𝜎1 by definition. The thermoelasticity-based
criterion is valid when the surface shear stresses are negligible (no in-plane or out-of-plane shear).

4. Experimental research

To compare the thermoelastic multiaxial criterion to the EVMS, a numerical FEM experiment is discussed in Section 4.1 followed
by a real experiment in Section 4.2.

4.1. Numerical experiment

A FEM model of the aluminium Y-shaped specimen [64] shown in Fig. 1 is used. The model is excited using a random uniform
broadband excitation 𝐒𝑓 𝑓 ,𝑧(𝜔) along the 𝑧-axis, exciting the first six modes 𝑟 = 1, 2,… , 6. The model is fixed on the bottom side in

and 𝑦-axis, which simulates the specimen fixed to the shaker with the vertical motion free (𝑧-axis). The first six eigenmodes are
alculated using the open-source software SfePy [65]. The eigenfrequencies are given in Table 1.
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Fig. 1. Y-Sample mesh and boundary conditions.

Fig. 2. Stress mode shape components for the fourth mode 𝜔4 = 6846 Hz. Stress is normalized to the maximum and minimum of each stress component.

Table 1
Eigenfrequencies of the numerical model (clamped, free in 𝑧-direction).
𝜔𝑟 [Hz] 1600 3831 6556 6846 11 410 15 840

From the 6 displacement mode shapes 𝜙𝑟, the six stress mode shapes 𝜙𝑠
𝑟 are also calculated, as shown in Eq. (9).

Each of the six stress modes has six stress components. In Fig. 2, the stress components of the fourth stress mode 𝜙𝑠
4 are shown.

As the mode shapes have no units, each of the plots in Fig. 2 is normalized to its maximum value.
The EVMS and the thermoelastic criterion are used as described in Section 3 to calculate the uniaxial equivalent stress response.

To analyse the extent, to which the shear stresses are present in the model, the thermoelastic equivalent stress (29) is compared
to the largest shear-stress component in the same colour range 3. It can be observed that in this model the maximum shear-stress
component is approximately 10 times smaller than the sum of the normal stresses, used in thermoelastic criterion, meaning, that
the assumption of the small shear stresses is valid in this case.
7 
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Fig. 3. Numerical results at 4th natural frequency: (a) uniaxial equivalent stress response 𝑆thermo(𝜔4) vs (b) shear stress 𝑆𝑧𝑦(𝜔4). Scale is normalized to max of
𝑆thermo(𝜔4).

Fig. 4. Damage contribution of the specific modes.

The spectral moments are then calculated for each mode of both response PSDs. Eq. (20) can be simplified for the case of uniform
excitation acting only in the 𝑧-direction [10]:

𝑟𝑚𝑖 = 2 ⋅ ∫
∞

0
𝜔𝑖 𝜁 (𝜔) d𝜔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐼𝑖

⋅Trace
[

𝐐 ⋅ 𝑟𝐀𝑠 ⋅ 𝐒𝑓 𝑓 ,𝑧 ⋅ 𝑟𝐀∗ T
𝑠

]

(33)

The integral 𝑟𝐼𝑖 only needs to be calculated once for each mode 𝑟, and once for each order of the spectral moment 𝑖. All the moments
are summed for the complete reduced model (21). The Tovo–Benasciutti method is used to determine the damage intensity (22).

The mode-damage contribution was calculated, as by Mršnik et al. [10], using the EVMS. A measure of the damage intensity 𝐷𝑟
is determined, which represents the effect a single mode has on the total damage intensity 𝑑. To determine 𝐷𝑟, the partial damage
intensity 𝑑∖𝑀𝑟

is calculated using all the modes with the exception of mode 𝑟. It is then subtracted from the total damage intensity
𝑑 [10]:

𝐷𝑟 =
𝑑 − 𝑑∖𝑀𝑟

𝑑
= 1 −

𝑑∖𝑀𝑟

𝑑
(34)

It was discovered that the fourth eigenmode 𝜔4 = 6846 Hz contributes the most to the damage intensity, as shown in Fig. 4. Note
that the damage contribution in Fig. 4 is on a logarithmic scale.

The damage intensity using the EVMS and the thermoelastic criterion is displayed in Fig. 5. The thermoelastic criterion estimates
the damage in the critical point approximately 50% higher than the EVMS.
8 
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Fig. 5. Damage, determined using (a) EVMS and (b) thermoelastic criterion.

4.2. Real experiment

An experiment with a thermal camera was conducted to further research the numerical experiment and to compare the simulated
damage intensity to the measured thermoelastic effect.

The same Y-shaped aluminium specimen as used in the numerical experiment (Fig. 1) was clamped vertically to the head of an
electro-dynamic shaker (model LDS V555). The Telops FAST m3K high-speed thermal imaging camera was positioned as shown in
Fig. 6. The specimen was painted with a high-emissivity, low-reflectivity black paint, to maximize the visibility of the thermoelastic
effect, and minimize the IR reflections from the environment that could be falsely identified as thermoelasticity. To further reduce
any IR reflections, an absorbing material was placed behind the specimen, resulting in the specimen being better distinguishable
from the background in the video. To decrease the eigenfrequencies to where they are measurable with the thermal camera, two
200 g weights were mounted on the arms of the Y-specimen, as shown in Fig. 6(b). With the added masses, the fourth eigenfrequency,
previously 𝜔4 = 6846 Hz, is reduced to 𝜔4 = 313 Hz. Although the weights cause an overall increase of the stresses on the specimen, it
is assumed that the relative distribution of the stresses in the fatigue zone and the location of the critical points are not qualitatively
influenced by the weights. As it was discovered in numerical experiment, the fourth mode shape contributes the most to the damage,
see Fig. 4. In the real experiment with the thermal camera, only the fourth mode was excited with the purpose of increasing the
signal-to-noise ratio of the measurement, as the thermoelastic effect in structural dynamics is typically at the level of millikelvin,
which is near the sensibility of the camera. To excite the fourth mode shape, the specimen was excited with a random signal from
300 to 330 Hz.

Thermal camera measurement.
A Telops FAST m3K high-speed thermal camera was used to capture the thermoelastic effect on the surface of the specimen.

The camera was set to a resolution of 132 × 128 pixels and 5000 FPS (Frames Per Second). The camera uses 16-bit encoding and
has a Noise Equivalent Temperature Difference (NETD) [66] of 32 mK. The length of the measurement was set to 5 s. A Fourier
transformation was used to convert the temperature-variation measurement at each pixel into the frequency domain. Averaging of
a subset size 3 × 3 around the pixel of interest was used to improve the signal-to-noise ratio of the measurement.

The thermoelastic effect at 𝜔4 = 313 Hz was clearly visible in the frequency domain. By mapping the amplitudes of the
temperature variation of the observed mode shape to every pixel, the heatmaps shown in Figs. 7 and 8 are generated.

In Fig. 7, the results from the FEM analysis and the thermal camera measurement are compared. In Fig. 7(a), the simulated first
invariant of the fourth mode shape is displayed (𝜙𝜎𝑥𝑥4 + 𝜙𝜎𝑦𝑦4 + 𝜙𝜎𝑧𝑧4) (31). Fig. 7(b) shows the same stress response, measured
with a thermal camera, when exciting the fourth mode shape. This stress response is proportional to the first invariant of the stress
mode shape, as shown in Eq. (31). In Fig. 7(b), the imaginary component of the measurement is shown, with the purpose of also
displaying the sign of the temperature’s amplitude.

Fig. 8 shows the differences between the calculated damage intensity using the EVMS criterion and the proposed thermoelastic
criterion in comparison with the damage calculated using the thermoelastic effect, measured with the thermal camera.

5. Discussion

In the synthetic experiment the damage intensities of the model were calculated using the established EVMS method and the
proposed thermoelasticity-based method. By comparing the results, it is possible to assess the extent to which the thermoelastic
criterion is close to the EVMS. Further, the numerical experiment is used to investigate whether the analysis of the multiaxial
vibration fatigue based on the thermal imaging camera is reasonable. The results of the numerical experiment are also compared
with a real thermoelastic effect measured with a thermal imaging camera.
9 
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Fig. 6. Experimental setup.

Fig. 7. Comparison of (a) simulated stress mode shape (first invariant) 𝜙𝜎𝑥𝑥4 + 𝜙𝜎𝑦𝑦4 + 𝜙𝜎𝑧𝑧4 and (b) measured stress response at the fourth natural frequency.

Fig. 8. Comparison of calculated damage intensity by (a) EVMS FEM: 𝑑EVMS, (b) thermoelastic criterion FEM: 𝑑thermo and (c) measured thermoelastic effect.
10 
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For a Y-sample, Fig. 7 shows the first invariant of the fourth stress mode shape in comparison with the experimentally measured
hermoelastic response, when narrowband excited close to the fourth natural frequency. The results of the FEM modal analysis
nd the experiment with the thermal camera show a good correlation, as the measured distribution of the tensile and compressive
tresses is clearly proportionate to the FEM simulation.

It is essential to verify the locations of the damage-critical points on the model, as this is the key information for the damage-
reasoning analysis in real-world applications. Comparing the locations of critical points in Fig. 8, it can be observed that the EVMS
and the thermoelasticity-based criterion give similar results, i.e., critical points are on the thinnest section of the model/experiment
around the central hole. While the location of the critical points shows good alignment, the distribution of the damage intensity
around them differs. The damage intensity, calculated using the EVMS (Fig. 8a), is more evenly distributed across the whole side
cross-section of the model, while the thermoelastic criterion gives a localization of the damage intensity at the centre, with an
val-shaped distribution around it (Fig. 8b). The difference in results is caused by the fact that the thermoelastic criterion does not

consider the shear stresses, unlike the EVMS, which considers the full stress tensor. The shear stresses are predominant near the
edges of the model in this case, like it can be observed in Fig. 2, while the normal stresses have their maximum near the centre of
he cross-section.

Comparing the thermoelastic effect heatmap measured with the thermal camera (Fig. 8c) with the FEM result (Fig. 8b), it is
evident that the simulated critical points match the measured hotspots of the thermoelastic effect. The distribution of the measured
mplitudes has a distinct oval shape with a maximum in the centre, which resembles the damage intensity computed using the
hermoelastic criterion. The damage measured with the thermal camera is higher than the simulated damage because of the added
eights in the experiment.

6. Conclusions

Based on minute changes in the surface temperature, the thermoelasticity enables full-field, close-to-real-time and non-contact
stress-state measurements of dynamically excited structures. When measuring multiaxial stress states, the thermal camera inherently
cts as a multiaxial criterion as it identifies the uniaxial equivalent stress (scalar value) on the surfaces of the structures. Under the

adiabatic conditions, the temperature oscillations are directly proportionate to the first invariant of the stress tensor (sum of the
normal stresses). The temperature oscillations can be measured with a fast thermal imaging camera and related to the first stress
invariant through the material’s thermoelastic constant and directly used for damage-intensity identification. The second stress
invariant (related to shear stresses) cannot be detected with a thermal camera.

This research introduces the thermoelasticity-based multiaxial vibration fatigue criterion as an alternative to the established
methods (e.g., EVMS criterion). The advantage of the thermoelastic criterion is the ability for its direct identification with a thermal
amera, as there is currently no other method for the full-field multiaxial damage detection. The research introduces the definition
f the thermoelastic multiaxial vibration-fatigue criterion, which is used for simulating results similar to those measured with a
hermal camera during harmonic excitation. The damage, calculated with the proposed thermoelastic criterion, is compared to the

EVMS in a numerical experiment.
The limitations of the thermoelastic approach are showcased. The proposed thermoelasticity-based damage identification can

only be applied if the normal stresses are much bigger than the shear stresses. Since the thermal camera measures the first stress
invariant, it cannot detect shear stresses, limiting its applicability in certain multiaxial stress conditions. However, normal stresses
till play a crucial role in fatigue crack initiation in many cases, such as bending, where cyclic tension and compression occur. Thus,

while the criterion is not suited for all scenarios, it is highly effective in cases where normal stresses dominate. Comparing the
amage calculated with the EVMS and the thermoelastic criterion on the Y-shaped model, the general location of the critical points
oincides. The observed differences were due to the fact that the thermoelastic criterion overestimates the damage in comparison
ith the EVMS under biaxial tension or biaxial compression and underestimates the damage when the principal stresses on the

urface have different signs, with zero damage being detected under pure shear stress (𝜎1 = −𝜎2).
As the proposed criterion is related to the first stress invariant, it is independent of the principal axis orientation, meaning it has

he same value under rotating principal directions. By the categorization of numerical models, defined by Skibicki [67], the ther-
moelasticity based criterion falls under the category of models which, technically speaking, allow calculations for non-proportional
loading, but do not take into account the influence of non-proportionality on fatigue life or strength.

The simulated vibration-fatigue damage of the Y-sample is compared to a real experiment. The vibration-fatigue damage
experimentally identified at fourth mode shape corresponds to the one numerically simulated. The experiment shows that real-time
and full-field experimental identification of vibration-fatigue damage is possible. Based on the proposed approach, a new insight
into vibration-fatigue damage is possible, potentially fostering new research in understanding the mechanisms of multiaxial damage.
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Appendix. Thermoelasticity

The laws of the thermoelastic effect are based on the laws of thermodynamics [68] and the laws of continuum mechanics [69].
From the first and second laws of thermodynamics, the expression is derived [39]:

d𝑢 = 𝛿 𝑞 + 𝛿 𝑤, (A.1)

where 𝑢 is the internal energy, 𝑞 is the heat transferred from the surroundings to the system and 𝑤 is the work exchanged with the
surroundings. The following relations define the work 𝑤 and the entropy 𝑠 in differential form [68]:

𝛿 𝑤 =
𝜎𝑖𝑗 d𝜀𝑖𝑗

𝜌
, (A.2)

d𝑠 =
𝛿 𝑞
𝑇

, (A.3)

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the stress and the deformation tensors and 𝜌 is the material density [48]. Using relations (A.2) and (A.3),
Eq. (A.1) becomes:

d𝑢 = 𝑇 d𝑠 +
𝜎𝑖𝑗 d𝜀𝑖𝑗

𝜌
, (A.4)

To derive the thermoelastic law, the Helmholtz free energy 𝐻 is introduced in its differential form [46]:

d𝐻 = d𝑢 − 𝑇 d𝑠 − 𝑠 d𝑇 (A.5)

Inserting Eq. (A.1) into Eq. (A.5), the following expression is derived, where the assumption of local reversible changes is used:

d𝐻 =
𝜎𝑖𝑗 d𝜀𝑖𝑗

𝜌
− 𝑠 d𝑇 (A.6)

The Helmholtz free energy 𝐻 can also be defined as a state function, i.e., as two partial derivatives, first, at constant temperature
and second, at constant deformation [46]:

d𝐻 =
(

𝜕 𝐻
𝜕 𝜀𝑖𝑗

)

𝑇
d𝜀𝑖𝑗 +

( 𝜕 𝐻
𝜕 𝑇

)

𝜀𝑖𝑗
d𝑇 (A.7)

By comparing Eqs. (A.6) and (A.7), the following relations are obtained [46]:

𝜎𝑖𝑗 = 𝜌 𝜕 𝐻
𝜕 𝜀𝑖𝑗

(A.8)

𝑠 = − 𝜕 𝐻
𝜕 𝑇 (A.9)

The entropy 𝑠 can also be defined as a state function of deformation and temperature:

d𝑠 =
(

𝜕 𝑠
𝜕 𝜀𝑖𝑗

)

𝑇
d𝜀𝑖𝑗 +

( 𝜕 𝑠
𝜕 𝑇

)

𝜀𝑖𝑗
d𝑇 (A.10)

From (A.3) and (A.9), the specific heat per unit mass at zero strain 𝑐𝜀 is introduced to derive the thermoelastic law:

𝑐𝜀 =
(

𝛿 𝑞
d𝑇

)

𝜀𝑖𝑗
=
(𝑇 d𝑠

d𝑇

)

𝜀𝑖𝑗
= −𝑇

(

𝜕2𝐻
𝜕 𝑇 2

)

𝜀𝑖𝑗
(A.11)

Inserting Eqs. (A.8), (A.9) and (A.11) into Eq. (A.10), results in [46]:

d𝑠 = −1
𝜌
𝜕 𝜎𝑖𝑗
𝜕 𝑇 d𝜀𝑖𝑗 + 𝑐𝜀

d𝑇
𝑇

(A.12)

From the definition of entropy (A.3) and Eq. (A.12), it follows:
𝛿 𝑞
𝑇

= −1
𝜌
𝜕 𝜎𝑖𝑗
𝜕 𝑇 d𝜀𝑖𝑗 + 𝑐𝜀

d𝑇
𝑇

(A.13)
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Finally, expressing d𝑇 , Eq. (A.13) becomes:

d𝑇 = 𝑇
𝜌 𝑐𝜀

𝜕 𝜎𝑖𝑗
𝜕 𝑇 d𝜀𝑖𝑗 +

𝛿 𝑞
𝑐𝜀

(A.14)

From the laws of thermodynamics, Eq. (A.14) is derived, which gives the relation between temperature change and both the
stress and strain tensors. To define the relation between the temperature change and the stress, the strain tensor must be related to
the stress tensor using constitutive relations [69]:

An equation that relates the strain tensor to the stress tensor can be written in the following way:

𝜎𝑖𝑗 = 2𝜇 𝜀𝑖𝑗 +
(

𝜆 𝜀𝑘𝑘 − 𝛾 𝛥𝑇 ) 𝛿𝑖𝑗 , (A.15)

Eq. (A.15) is valid for homogenous isotropic conditions and 𝜇, 𝜆 and 𝛾 are Lamé parameters [70]. 𝛿𝑖𝑗 is the Kronecker delta defined
as:

𝛿𝑖𝑗 =
⟨

1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

(A.16)

From Eqs. (A.15) and (A.16) it is evident that the temperature changes are only related to diagonal values of the stress tensor, i.e.,
the normal stresses [70]. Combining Eq. (A.14) and constitutive relation (A.15) results in:

𝜕 𝜎𝑖𝑗
𝜕 𝑇 = −𝛾 𝛿𝑖𝑗 , (A.17)

Eq. (A.17) can be inserted into Eq. (A.10):

d𝑠 = 𝑐𝜀
d𝑇
𝑇

+
𝛾
𝜌
𝛿𝑖𝑗 d𝜀𝑖𝑗 (A.18)

The product of 𝛿𝑖𝑗 and d𝜀𝑖𝑗 is 𝜀𝑘𝑘, which is the first invariant of the strain tensor or cubic dilatation [69]:

d𝑠 = 𝑐𝜀
d𝑇
𝑇

+
𝛾
𝜌
d𝜀𝑘𝑘 (A.19)

By integrating Eq. (A.19) and considering the initial conditions 𝑠𝑣 = 0, (𝜖𝑖𝑗 )0 = 𝜖𝑖𝑗 in 𝑇 = 𝑇0, the following equation is obtained
assuming small temperature differences 𝛥𝑇 ≪ 𝑇0 [40]):

𝑠 = 𝑐𝜀
𝛥𝑇
𝑇0

+
𝛾
𝜌
𝛥𝜀𝑘𝑘 (A.20)

Considering an adiabatic process, 𝑠 = 0, Eq. (A.20) becomes:

𝛥𝜀𝑘𝑘 = − 𝛥𝑇
𝛾 𝑇0

𝜌 𝑐𝜀 (A.21)

By using the constitutive relation in Eq. (A.15), Lamé constants and defining the relation between the heat capacities at constant
pressure 𝑐𝑝 and zero strain 𝑐𝜀 (for more details see [46]), the law of the thermoelastic effect is derived:

𝛥𝜎𝑘𝑘 = −𝛥𝑇 𝜌
𝛼 𝑇0

𝑐𝑝 (A.22)

or:

𝛥𝑇 = 𝐾𝑚 (𝛥𝜎𝑥𝑥 + 𝛥𝜎𝑦𝑦 + 𝛥𝜎𝑧𝑧) (A.23)

where 𝐾𝑚 is the thermoelastic constant [48]:

𝐾m = −𝛼 𝑇0
𝜌 𝑐p

(A.24)

𝑇0 is the temperature of the surroundings and 𝛼 is a coefficient of heat expansion.
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